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Abstract. We discuss gauge differential form theories on the lattice which have Kalb- 
Ramond theories of interacting r and r - 1 forms as nai’ve continuum limit; the Higgs 
character of the r - 1 form is clearly displayed. We derive some inequalities useful for 
drawing tentative phase diagrams and analyse the existence of 8-vacua. 

1. Introduction 

Multi-index fields were introduced by Kalb and Ramond (1974) as a generalisation 
of the electromagnetic interaction between point-like charges to the case of extended 
objects. Recently, multi-index fields have received particular attention in a few sectors 
of high energy physics, especially in the U ( l )  problem in QCD and in supergravity 
(Townsend 1981). 

The purpose of this paper is to discuss the lattice regularisation of these fields with 
r-indices where an interaction with r - 1 fields is also introduced. Some inequalities 
are obtained for the critical temperatures at different dimensions and number of 
indices which may be used for discussing phase diagrams. Furthermore, we generalise 
@-vacua of the scalar quantum electrodynamics in two dimensions to the case of r-index 
fields in r + 1 dimensions. 

What appears at this stage is that the conclusions we draw depend qualitatively 
only on d - r when r t 1. This is in contradiction with some approximations, e.g. the 
Migdal one (Orland 1982), and seems also to be in contrast with heuristic arguments 
based on Hausdorff dimension (for similar arguments see Parisi (1979)). 

Throughout the discussion we avoid the cumbersome notation where all the indices 
appear, using the formalism of differential forms (see e.g. Guth 1980). 

The paper has the following subdivision. In 9 2 we review briefly the classical 
theory on the continuum and on the lattice. In § 3 we derive some correlation 
inequalities for the Wilson-Wegner loop and for the critical coupling at different d 
(dimension) and r (rank). A diamagnetic inequality is also obtained. In 8 4  the 
generalisation of @-vacua is discussed. We end with some conclusions in 9 5 .  
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2. Antisymmetric gauge field on the lattice 

The classical theory of the r-index fields is described by an action: 

,]...,,+l S = F A * F =  F,,,,,,,+,F I I  2r! 

where the field strength F is an ( r  + 1)-form defined starting from a potential A in 
analogy with electrodynamics (r = 1): 

F = d A  (2) 

A = A ,  ,2 dxwl A . .  . hdxFr. (3) 

A + A’ = A + de, (4) 

with 

Due to equation (2) we have that F is invariant under local gauge transformation 

6’ being an (r - 1)-form. 
We shall call this class of fields gauge differential forms of rank r. When r = 1 is 

taken, we get the well known electrodynamics, while for r = 2 we have the Kalb and 
Ramond fields (Kalb and Ramond 1974). More precisely, they introduce also an 
interaction with a ‘Higgs boson’ B, in the following way: 

S = ddX (a[,A.,~a[~A”P1+g2A,~11Y +2gA~””~[,B.~+a~,B.]a[’”BU1) ( 5 )  I 
which is invariant under the gauge transformation 

A,, +A:” = A,, + a[,evl, B,+BL=B,-gB,. (6) 

We note that the transformation law for B, is more similar to a Higgs field than to 
a gauge field (hence its name). 

It is straightforward to generalise the action (2.5) to gauge fields A of rank r and 
Higgs fields B of rank r - 1. In compact form we have for the action 

S = dA A *dA +g2A A *A +2gA A * dB + d B  A * dB (7) I 
which is invariant under the gauge transformation 

A + A’ = A + de, B+B’=B-gB,  (8) 
where 6 is an arbitrary (r - 1) form. 

It is well known that compactification of the symmetry group in electrodynamics 
gives rise to problems due to the introduction of monopole-type singularities. When 
antisymmetric tensors are considered, problems are already present at an early stage. 
In fact, while for the case r = 1 we have to deal with the gauge function (see the e 
function which appears in the gauge transformation (4)) and it is clear what we mean 
by U(1)-valued gauge functions, now, when r > 1, it is not obvious what U(1)-valued 
(r - 1)-forms mean. However, this difficulty may be overcome by reinterpreting the 
theory in an (r - 1)-times iterated loop space, (Freund and Nepomechie 19811. In 
such a space, the topological properties of the A and B fields and the Higgs character 
of the latter are clearly put in evidence (Marchetti 1982). Now we would like to 
discuss such a theory in its lattice regularisation. It is known that, in such a case, 
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singularity problems no longer exist, and the same is true for the problem of what 
‘U(1)-valued r - 1 differential forms’ means, due to the definition of the fields. The 
solution of the latter problem is related to the growth of the cell dimension, where 
the field is defined, as the rank of the form increases. 

We recall now the basic definition of the formalism of differential forms on the 
lattice. Let A be a d-dimensional hypercubic lattice and let Cr denote an elementary 
oriented cell whose dimension is r. The cell with reversed orientation will be denoted 
by -Cr. An r-form A is a map from the set of r-cells into R (in general this can be 
a ring, e.g. Z, U(1) etc), 

A :  C, -+ A(C,), (9) 
with the property 

A(C,)= -A(-C,). (10) 
Furthermore, one defines the (co)boundary operator, (S)d which maps r-forms into 
(r - 1) r + 1 forms in the following way: 

SA(Cr-l)= E A(Cr). 
c, c,-,=ac, 

Moreover, one defines the inner product of r-forms: 

With this definition, the operators S and d are adjoints with respect to the product 
defined by equation (13).  The action in the Wilson form for the interacting system is 

(14) 

where A, B E [-T, T] and q is an integer which is the charge of the B fields. Equation 
(14) can be rewritten in an equivalent form, defining the following fields taking values 
onto the U(1) group: 

S = p r  COS dA ( C r + l )  + A r - 1 1  cos[dB (Cr) +qA(Cr)] 
c,+1 C, 

U(C,) = exp[iA(Cr)l, d(C7-d = exp[iB(C,-dqI. ( 1 5 ~  6 )  
Thus, equation (14) becomes 

The local gauge invariance of this action is 

A + A ’ = A  +de, B + B ’ = B  -8q. 

In  the naive continuum limit, this action becomes equation (7) with the identification 
g 2 0 C A / p .  Another form of the action, which is very useful, is the Villain one 
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where n and m are respectively r + 1 and r integer valued forms. This action should 
be equivalent to the previous one in the following limits: 

P Y = P ~ ,  P r + a ,  

~ ’ i  = (2 WVP~))-’ ,  P r  + 0 ,  
and similarly for the A-coupling. 

We end this section with two remarks. The whole construction can be applied also to 
every abelian group as for example ZN: the case N = 2 was already discussed in the 
pioneer work by Wegner (1971). Furthermore, the extension to non-abelian groups 
seems problematic, due to the lack of an ordering criterion for r-cells when r > 1. In the 
abelian case, one can introduce Higgs fields whose radial component is not fixed (to 1 as in 
the present case). However, it is not clear what should be the corresponding continuum 
theory. 

3. Correlation inequalities 

For arbitrary r and A,-l  = 0 the phase structure is quite well understood, due to the 
work by Frohlich and Spencer (1982a) (see also Orland 1982). Let us define the 
Wilson-Wegner operator as 

where Vr+l is an ( r  + 1)-dimensional volume. The results of the previous reference 
can be summarised as follows: for (integer) dimensions, d S r + 2 and r 2 1 there is 
no phase transition (only a massive phase) and 

(w(avr+l)) exp(-a (Pr)l  Vr+ll) (18) 
where 1 VI is the volume of V and a > 0, i.e. external sources are ‘confined’ for every 
value of P,. When d a r + 3 there is a massive phase of small Pr  where equation (18) 
holds and a massless phase of large Pr  where instead of (18) we have 

(w(a V , + d  exp(-a ‘(@,)la vr+& (19) 
For r = 0 we have the Kosterlitz-Thouless transition already present in d = 2 (Frohlich 
and Spencer (1982b). Let us discuss the intuitive picture which emerges from these 
results. The thermal average of the Wilson-Wegner operator corresponds to evaluat- 
ing the increase of the free energy in the system when an external conserved current 
(of rank r )  is coupled to the gauge fields (of rarik r ) .  If equation (18) holds, then 
the free energy difference is proportional to the volume, which means that the external 
sources tend to collapse. 

Correlation inequalities for these models can be derived following Ginibre’s work 
(Ginibre 1970) with some slight modifications for the Villain form of the action. The 
inequalities we used are of the form 

( f g ) - ( f ) ( g ) a O  (20) 
with f and g belonging to the multiplicative cone generated by 

{cos[(m, A )  + (n ,  B)1} 
where m and n are integer valued r- and ( r  - 1)-forms respectively. It is straightforward 
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to deduce that the average of the Wilson-Wegner loop (17) is a monotone non- 
decreasing function of the couplings @ and A (see for some examples de Angelis et 
a1 1977a, b and Guth 1980). Therefore it is immediate that (W(aV,+l)) is a monotone 
non-decreasing function of the dimensionality and in the case Ar- l  = 0 this implies 
that the critical coupling pld’, which is the border point between different behaviours 
(18) and (19), satisfies the inequality 

i.e. the Coulomb phase for the pure gauge theory is non-decreasing with the dimension. 
Now we would like to have an inequality which relates critical couplings between 

models with different r’s .  For this reason, generalising a well known method (Brydges 
et a1 1979a, b), we add to the original action an extra term 

6 6 C ,  B d C , - ,  

if the action has the Wilson form while 

B E C ,  CidC,-1 B E C ,  s e c , - ,  

when the action is the Villain one. In (23) and (24), 6 &  Cr(Cr-l) means that the 
direction 6 does not belong to the Cr(Cr-l) cell. For the Villain action the last two 
terms in (24) have been introduced so that the integration range of the A and B fields 
can be extended over the real line. Following a straightforward generalisation of 
Ginibre’s work (Guth 1980, Elitzur et a1 19791, it is easy to prove that (w(avr+l))hM,hG 

is a monotone non-decreasing function of h~ and h~ so that 

( w ( a v r + l ) ) h , = h G = O  (w(dVr+l))h,=hG=cc (25) 
(in general this inequality holds for any function belonging to the cone generated by 
the set in (21)). 

In the RHS of (25) due to the h + 00 limit, we have 

A(Cr) = 0; B(Cr- l )  = 0 if 6 ~ ‘  Cr, L1, 
which means that in such a limit the model becomes a product of ( d  - 1)-dimensional 
models, one for each hyperplane with xo fixed, of the same type as the starting model 
but with r substituted by r - 1 (for the Villain action we must put back h’= 0). 

Now, if we consider a ‘volume’ Vr+l = V, X T where T is the side along the 6 
direction, it follows from (25) and from monotonic behaviour in @ and A that 

( W (8  Vr + 1 ) ) d  (Pn A r - I s ( W (8  Vr 1) dT_ 1 ( @ L- 1 3 A : - 2  1 7  P r  E @;-I,  A r - 1  :-2 (26) 

Putting = A :-1 = 0, the same argument which led to (22) now gives 
pi”_; l j s@idJ 

This result combined with (22) also gives 

Equations (27) and (28) mean that on the pure gauge axis the critical coupling is 
non-decreasing in d for d - r fixed and non-decreasing in r for d fixed. 
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Some simple consequences can be drawn from equation (26). In fact if the Higgs 
fields, B, have multiple charge, i.e. q # 1 in equations (14)-(16), then iterating (26) 
until the dimension becomes 2 and using a result due to Mack (1979), we obtain that 
the Wilson-Wegner loop decays exponentially with the volume 1 Vr+ll for d = r + I t .  
Furthermore, because A = O  implies /3r=1 = m  for the Villain model (Gopfert and 
Mack 1982), we get from (27) that in d = r  + 2 and A = 0, ( W(aV,+,)) follows a volume 
law for all values of the coupling pr+ for the Villain action. 

Another useful inequality follows from (26) when the limit A : -2  +CO is considered. 
In this case the limit model of the RHS of (26) is the pure Z, gauge model. It is easy 
to obtain, for the considered class of models, the diamagnetic inequality (Brydges et 
a1 1979) 

Z ( A )  s Z ( A  = 0) (29) 

- ( d  = 3 )  

where Z ( A )  is the partition function of the model where only the action of the matter 
field B interacting with an external source A is considered. Equation (29) holds in 
general when the Fourier coefficients of the cell action are non-negative. In fact, let 

be the action and 

with f a real function and n an integer valued r-form. Then 

Thus the result follows because the actions (14) and (16) have non-negative Fourier 
coefficients, as is easy to prove. 

It is worthwhile to mention also another form for the action of the pure gauge 
theory, i.e. the gaussian one 

where now A is a real valued r-form. To avoid divergences due to the gauge invariance, 
we always think of the action (31) with a mass parameter which may be removed 
later. The matter action has either the Wilson form or Villain form as usual. Now 
the correlation inequalities (20) hold with f and g belonging to the multiplicative cone 
generated by the set (21) where, this time, m are real valued r-forms. (Brydges et a1 
1979). Using standard arguments, it follows that (W(aV,+,)) is a monotone non- 
decreasing function of p, A and d. Furthermore, when A = 0 the inequality (22) still 

Strictly speaking, we obtain a decay faster than the volume. However, it is not difficult to generalise a 
result by Seiler (1978) and Simon and Yaffe (1982) which states that (W(aV,+,)) is bounded from below 
by a volume law so that the decay follows a volume law. 
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holds and, adding to the action a term of the type 

and an analogous one for the matter field B (see (23) and (24)), we get also the 
inequality (26) in the same way as before. Now the case A = 0 is trivial, because the 
action is quadratic in the field A.  Thus, in this case we consider (26) for A,-’ = A :-z + 00. 

In such a limit the field A becomes 

A - (27r/q)n 
A-CC 

where n is an integer valued r-form while the action becomes 

S ( n )  = -Pr(2r/q)’(dn, dn)  (32) 

which is similar to the action of a massless free field theory, but now the field takes 
only integer values. Therefore, we get the inequalities (27) and (28) for a pure gauge 
theory with integer valued r-forms. 

The whole set of inequalities that we have obtained by generalising arguments 
which were known for the gauge theory could be useful for understanding the model. 
The r = 1 case was discussed by Fradkin and Shenker (1979) and it is important also 
for the case r > l .  For such a purpose, we stress that it is easy to generalise the 
Osterwalder-Seiler proof of the existence of the cluster expansion which converges 
uniformly in A when the action has the Wilson or Villain form. This implies mass 
gap and analyticity of the expectations of local observables in the region of the (p, A )  
plane where the expansion converges (Osterwalder and Seiler 1978). Such a result 
can be used (Fradkin and Shenker 1979) to conclude the non-existence of the phase 
boundary between the Higgs regime ( @ , A  large) and the confinement regime ( & A  
small) if the Higgs fields B have fundamental charge (4 = 1). 

4. &vacua 

Now we would like to generalise @-vacua to the gauge differential forms of rank r. 
In the continuum, &vacua are related to the existence of a topological charge in 

the theory (see e.g. Seiler 1981). In the usual case of the one-form gauge fields, this 
happens in d = 2 for the U(1) group and in d = 4 for SU(N) groups where the topological 
charges are respectively the first Chern number C1 = -(27r)-* I,. F and the second 
Chern number Cz = ( E h ) - ’  ss4 Tr FAF. For the U ( l )  valued r-form gauge field it is 
possible to define an analogue of the first Chern number in d = r + 1 as Cf’ = 
-(27r)-’ S,.-I F where F is now an (r + 1)-form (Marchettj 1982), because F, being 
an ( r  + 1)-form on Sr+’ ,  gives rise naturally to a two-form on r - l-iterated loop space, 
and, simultaneously, the sphere Sr+‘  can be considered as a two-dimensional closed 
surface in the r - 1- time iterated loop space. 

On the lattice A, F corresponds to 

In the continuum, @-vacua for the U(1) group are obtained by 
term (i@/27r)C1 to the action, which corresponds to adding 

(33) 

adding the 
the term 
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(iO/2n)/ Cc,,,c,.\ dA/(C,+l) to the lattice action which is gaussian in the A fields. The 
existence of @-vacua can be related to the existence of an ‘instanton’ like configuration 
for the r-forms in r + 1 dimensions, which are the well known Nielson-Olesen vortex 
(Nielsen and Olesen 1973) for r = 1 and d = 2. In particular, for r - 3 and d = 4 these 
configurations are related to the Yang-Mills instantons through the identification of 
a ~ , , ~ ” ” ” “  with the topological charge density Tr F FypaF~”Fpu, where F”” is now 
the Yang-Mills field strength (Luscher 1978). 

Before studying the properties of the model we verify that, in d = r + 1, the gaussian 
and Villain forms of the action for the gauge field are equivalent if the matter field 
action is periodic (this point will be useful because we shall need some correlation 
inequalities of the gaussian model). In fact, working in the axial gauge, which means 
that A,,,,, w,-ll,o=,.j = 0 for r-forms, we have 

dA ( C,+ 1 )  = A (C,) - A  ( C, - 6) (34) 

where C,, C, - o* E aC,,,. Then for any observable which is periodic in the A field, 
the integration range for the A field can be restricted to ( 0 , 2 l ~ )  and the exponentiated 
gauge action becomes 

where n is an integer valued r-form in the axial gauge (34). Since in (35) dn is the 
difference of two integers without constraints, it can be replaced by m E Z (determined 
by dn apart from a global constant integer) so that (35) becomes the Villain form of 
the gauge action. 

Now, let us perform the duality transformation for the Villain model after fixing 
the gauge B = 0 (unitary gauge): 

en =constant 1 exp --(am, a m )  -- m +-, m +- 
i m )  [ ;A 2P 2.n 2.n 

Thus, we have that &,, is periodic in 0. Now we would like to prove the existence 
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of the thermodynamic limit for the energy density 

where the subindex A in the last average means that the Boltzmann weight is restricted 
to A.  

First, we notice that the @-states have the Osterwalder-Schrader positivity 
(reflection positivity can be proved, for the model considered in this paper, generalising 
standard arguments (Osterwalder and Seiler 1978, Seiler 198 1) in a straightforward 
way). Thus, we apply the Schwarz inequality to the Osterwalder-Schrader inner 
product to obtain the following inequality: 

where A' is one half of the lattice '1. Now, using inequality (20) for the multiplicative 
cone generated by the set (21), with m a real valued r-form, we have that the LHS 
of (38) is not decreasing with A, and thus it can be replaced by the average taken on 
the lattice -1'. Iterating (38), we finally obtain 

where 1.11 = 2"/,2'1 and rz E N. Then, it  is not difficult to conclude the existence of the 
limit (37). Furthermore, from (36 )  and due to the monotonic behaviour in the coupling 
in the last average of (37), taking A + +m we get 

Along the same lines, it is very easy to prove 

l(w0 ( a ~ , + ~ ) ) , /  a e x p [ ( s ( ~  + @ ) - E ( ~ ) ) \ P , + ~ ) I  

(W,,(aV,+,) = n exp[i8'AiCr)/2.rr] 

where 

C, E J V, j 

and the subscript means that the 8 term is present in the action. 

5. Conclusion 

In  this paper we have obtained generalised inequalities for a gauge field of rank r in 
a d-dimensional lattice which can be useful for drawing tentative phase diagrams for 
models of interacting r- and ( r  - 1)-forms. 

The existence of a region of analyticity in the coupling constant space for local 
observables suggests phase diagrams which are similar to the ones considered by 
Fradkin and Schenker (1979). As proved by Frohlich and Spencer, the pure gauge 
theory has a lower critical integer dimensionality d t  equal to r + 3(r > 1). Regarding 
the E ,  model, using duality arguments and the above-mentioned inequalities, it is 
easy to see that dk = r + 2. 
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The analysis of @-vacua in d = r + 1 on the lattice confirms the classification given 
by Isham (1981) in the continuum (Marchetti and Percacci 1982) and gives rise to a 
natural extension of properties of the scalar (QED)*. 

Note added in proof. With regard to the inequality (26), i t  was proved by Maritan and Stella (1983) that 
there exists a particular lattice where it is satisfied as an equality. 
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